The Science of Fear

**Warning, geeky post ahead.**

If you’re interested in the science of fear, this Discover article provides a nice overview about the biology connected with fear. It begins with an experiment by a psychologists named John Watson;

“In one of the most famous (and infamous) of these experiments, American psychologist John Watson decided to see if he could teach an 11-month-old baby named Albert to become scared of arbitrary things. He presented Albert with a rat, and every time the baby reached out to touch it, Watson hit a steel bar with a hammer, producing a horrendous clang. After several rounds with the rat and the bar, Watson then brought out the rat on its own. “The instant the rat was shown, the baby began to cry,” Watson wrote in a 1920 report. “Almost instantly he turned sharply to the left, fell over on his left side, raised himself on all fours and began to crawl away so rapidly that he was caught with difficulty before reaching the edge of the table.”

This research reveals that there are a variety of fear responses;

“The first kind of behavior is a reaction to a potential threat, in which a predator isn’t visible but there is good reason to worry that it might be nearby. A rat might walk into a meadow that looks free of predators, for example, but that reeks of fresh cat urine. In such a case, a rat will generally explore the meadow cautiously, assessing the risk of staying there. A second, more concrete type of threat arises if a rat spots a cat at the other side of the meadow. The rat will freeze and then make a choice about what to do next. It may slink away, or it may remain immobile in hopes that the cat will eventually wander away without noticing it. Finally, the most active threat: The cat glances over, notices something, and walks toward the rat to investigate. At this point, the rat will flee if it has an escape route. If the cat gets close, the rat will choose either to fight or to run for its life.”

And discusses findings about whether humans exhibit similar fear responses, by utilising a Pac Man-like video game in which  participants took on the role of prey being pursued by a predator;

“This deceptively minimalist predator-prey game triggers some remarkably intense feelings. Mobbs measured the skin conductance of his players by rigging them up to a device similar to a lie detector. He found that when the predator was bearing down on players, they often experienced the same changes to their skin as those seen in people having panic attacks. Mobbs unleashed two kinds of predators on his players, a less adept one that was easy to escape, and a smarter one that was more likely to capture its victim. When people were chased by the better predator, they showed a stronger panic response in their skin, and they also crashed into the walls of the maze more often.

Meanwhile, striking changes were happening inside the brains of the players. The predators would first appear on the far side of the maze. While they remained at a distance, the same brain regions tended to become active in the players, a network that included parts of the amygdala as well as some other structures in the front of the brain. But when the predator was closing in, those brain regions shut down and a network of previously quiet regions farther back in the midbrain became active.”

Whilst reading, I found that the bottom line is that fear is complicated…

“…the amygdala and the periaqueductal gray are ancient parts of the brain, dating back hundreds of millions of years. Our small hominid ancestors probably faced the same kinds of threats that baboons do today from leopards, eagles, and other predators. Even after we evolved the ability to use weapons and became predators ourselves, this ancient brain circuit still offered a useful defence against members of our own species.

Unfortunately, our exquisitely sophisticated brains may make this predator-defense circuit vulnerable to misfiring. Instead of monitoring just the threats right in front of us, we can also imagine threats that do not exist. Feeding this imagination into the early-warning system may lead to crippling chronic anxiety. In other cases, people may not be able to keep their periaqueductal gray and other midbrain regions under control. As we perceive predators getting closer, our brains normally make the switch from the forebrain to the midbrain regions. People who suffer panic disorders may misjudge threats, seeing them as far more imminent than they really are.”

I find that researching and learning about science allows me to figure out why my body reacts the way it does to certain stimuli, this then allows me to gain control of my own body again. Sometimes a reaction is out of your control, so why not learn a little about how to cope with your automatic response mechanism? Or read about why your heart rate increases so excessively when you feel fear? If you have been reading, please do feel free to comment a favourite article of yours for me to check out!

 

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s